资源类型

期刊论文 165

年份

2024 1

2023 20

2022 16

2021 10

2020 11

2019 7

2018 13

2017 15

2016 7

2015 6

2014 3

2013 5

2012 6

2011 4

2010 6

2009 4

2008 6

2007 9

2006 7

2005 1

展开 ︾

关键词

无线传感器网络 3

10kV高压电力电缆 1

Cu(In 1

Ga)Se2 1

RGB-D 1

上下文感知;协作学习;社会计算;虚拟组织;无线传感器网络;实时定位系统 1

云制造 1

交通运输物联网 1

企业物流管理模式 1

众包;柔性众包设计;设计智能 1

传感器融合 1

传感器调度;区域检测;目标跟踪;道路约束;多普勒盲区 1

传感引导;下肢外骨骼;人体传感网络;步态同步;体重支撑 1

传感网 1

住宅建筑 1

倾角传感器 1

健康监测系统 1

光波导 1

光流;仿视网膜图像传感器;脉冲触发;高速目标;视觉处理 1

展开 ︾

检索范围:

排序: 展示方式:

Flexible micro flow sensor for micro aerial vehicles

Rong ZHU, Ruiyi QUE, Peng LIU

《机械工程前沿(英文)》 2017年 第12卷 第4期   页码 539-545 doi: 10.1007/s11465-017-0427-0

摘要:

This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

关键词: micro flow sensor     flexible sensor     surface flow sensing     aerodynamic parameter     micro aerial vehicle (MAV)    

A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging

Guoting Xia, Yinuo Huang, Fujiang Li, Licheng Wang, Jinbo Pang, Liwei Li, Kai Wang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 1039-1051 doi: 10.1007/s11705-019-1901-5

摘要: A flexible, multi-site tactile and thermal sensor (MTTS) based on polyvinylidene fluoride (resolution 50 × 50) is reported. It can be used to implement spatial mapping caused by tactile and thermal events and record the two-dimensional motion trajectory of a tracked target object. The output voltage and current signal are recorded as a mapping by sensing the external pressure and thermal radiation stimulus, and the response distribution is dynamically observed on the three-dimensional interface. Through the mapping relationship between the established piezoelectric and pyroelectric signals, the piezoelectric component and the pyroelectric component are effectively extracted from the composite signals. The MTTS has a good sensitivity for tactile and thermal detection, and the electrodes have good synchronism. In addition, the signal interference is less than 9.5% and decreases as the pressure decreases after the distance between adjacent sites exceeds 200 µm. The integration of MTTS and signal processing units has potential applications in human-machine interaction systems, health status detection and smart assistive devices.

关键词: tactile/thermal sensor     piezoelectric/pyroelectric effects     high resolution     spatial mapping     motion monitoring    

Piezoelectric pump with flexible venous valves for active cell transmission

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0712-4

摘要: The development of organ-on-a-chip systems demands high requirements for adequate micro-pump performance, which needs excellent performance and effective transport of active cells. In this study, we designed a piezoelectric pump with a flexible venous valve inspired by that of humans. Performance test of the proposed pump with deionized water as the transmission medium shows a maximum output flow rate of 14.95 mL/min when the input voltage is 100 V, and the pump can transfer aqueous solutions of glycerol with a viscosity of 10.8 mPa·s. Cell survival rate can reach 97.22% with a yeast cell culture solution as the transmission medium. A computational model of the electric-solid-liquid multi-physical field coupling of the piezoelectric pump with a flexible venous valve is established, and simulation results are consistent with experimental results. The proposed pump can help to construct the circulating organ-on-a-chip system, and the simple structure and portable application can enrich the design of microfluidic systems. In addition, the multi-physical field coupling computational model established for the proposed piezoelectric pump can provide an in-depth study of the characteristics of the flow field, facilitating the optimal design of the micro-pump and providing a reference for the further study of active cell transport in organ-on-a-chip systems.

关键词: venous valve     flexible venous valve     cell transmission     organ-on-a-chip system     piezoelectric device    

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 235-240 doi: 10.1007/s11465-011-0122-5

摘要:

To solve many key technical problems during the development of modern instrumentation system integration and provide a new mode and fundamental technical equipment for the research and development (R&D) of modern instrumentation products, based on the concept of an instrumentation flexible developing system (IFDS), this paper discusses the creation and open flexible integration mechanism, perfects the integrated supporting environment and integrated system of the flexible interconnection, and constructs the new flexible integrated system. Based on the operation mechanism of the modern instrumentation developing system and the research and optimization of the rapid integration design method, the paper emphasizes the dynamic integrating method of multiple types of knowledge in a modern instrument R&D system, to effectively utilize the rich integrated resource and achieve rapid integration of the system. Applications show that the new IFDS can improve the integration level and efficiency of R&D of the modern instrumentation system, enforce the reliability of the system, shorten the R&D period, and reduce the development costs.

关键词: modern instrumentation developing     flexible interconnection     flexible integration mechanism     rapid integration system     dynamic integrating method    

Review on flexible perovskite photodetector: processing and applications

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0749-z

摘要: Next-generation optoelectronics should possess lightweight and flexible characteristics, thus conforming to various types of surfaces or human skins for portable and wearable applications. Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence, aerospace industry, and wise information technology of 120, among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties, remarkable mechanical flexibility, low-cost and low-temperature processing methods. To date, most of the reports have demonstrated the fabrication methods of the perovskite materials, materials engineering, applications in solar cells, light-emitting diodes, lasers, and photodetectors, strategies for device performance enhancement, few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors, which we will give a comprehensive summary, herein. To begin with, a brief introduction to the fabrication methods of perovskite (solution and vapor-based methods), device configurations (photovoltaic, photoconductor, and phototransistor), and performance parameters of the perovskite-based photodetectors are first arranged. Emphatically, processing strategies for photodetectors are presented following, including flexible substrates (i.e., polymer, carbon cloth, fiber, paper, etc.), soft electrodes (i.e., metal-based conductive networks, carbon-based conductive materials, and two-dimensional (2D) conductive materials, etc.), conformal encapsulation (single-layer and multilayer stacked encapsulation), low-dimensional perovskites (0D, 1D, and 2D nanostructures), and elaborate device structures. Typical applications of perovskite-based flexible photodetectors such as optical communication, image sensing, and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level. Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end. The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors, but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing, human life, and health care.

关键词: photodetector     perovskite     flexible     processing     application    

A review of the scalable nano-manufacturing technology for flexible devices

Wenbin HUANG,Xingtao YU,Yanhua LIU,Wen QIAO,Linsen CHEN

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 99-109 doi: 10.1007/s11465-017-0416-3

摘要:

Recent advances in electronic and photonic devices, such as artificial skin, wearable systems, organic and inorganic light-emitting diodes, have gained considerable commercial and scientific interest in the academe and in industries. However, low-cost and high-throughput nano-manufacturing is difficult to realize with the use of traditional photolithographic processes. In this review, we summarize the status and the limitations of current nano-patterning techniques for scalable and flexible functional devices in terms of working principle, resolution, and processing speed. Finally, several remaining unsolved problems in nano-manufacturing are discussed, and future research directions are highlighted.

关键词: flexible nano-manufacturing     flexible devices     nanofabrication     scalability    

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 350-359 doi: 10.1007/s11465-013-0271-9

摘要:

Cable-suspended manipulators are used in large scale applications with, heavy in weight and long in span cables. It seems impractical to maintain cable assumptions of smaller robots for large scale manipulators. The interactions among the cables, platforms and actuators can fully evaluate the coupled dynamic analysis. The structural flexibility of the cables becomes more pronounced in large manipulators. In this paper, an analytic solution is provided to solve cable vibration. Also, a closed form solution can be adopted to improve the dynamic response to flexibility. The output is provided by the optimal torque generation subject to the actuator limitations in a mechatronic sense. Finally, the performance of the proposed algorithm is examined through simulations.

关键词: parallel robot     flexible cable     suspended robot     dynamic    

Biomedical sensor technologies on the platform of mobile phones

Lin LIU, Jing LIU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 160-175 doi: 10.1007/s11465-011-0216-0

摘要:

Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

关键词: biomedical sensor     pervasive technology     mobile phone     combined system     health management    

Possible role of power-to-heat and power-to-gas as flexible loads in German medium voltage networks

Mark KUPRAT, Martin BENDIG, Klaus PFEIFFER

《能源前沿(英文)》 2017年 第11卷 第2期   页码 135-145 doi: 10.1007/s11708-017-0472-8

摘要: Germany’s energy transition triggered a rapid and unilateral growth of renewable energy sources (RES) in the electricity sector. With increasing shares of intermittent RES, overcapacities during periods of strong wind and photovoltaic electricity generation occur. In the face of insufficient transmission capacities, due to an inhibited network extension, the electricity generation has to be curtailed. This curtailment of RES leads to economic losses and could be avoided through flexible loads. As an option to cope with those problems, the technologies of power-to-gas (PtG) and power-to-heat (PtH) are presented in this paper. First, the alkaline electrolyzer (AEL), polymer electrolyte membrane electrolyzer (PEMEL), and solid oxide electrolyzer cell (SOEC) are investigated regarding their operational parameters. Second, the electric boiler, electrode heating boiler, and heat pumps are considered. Ultimately, the network-supporting abilities and the potential to provide ancillary services, such as control power, load sequence operation, cold start and part load capability, are compared among one another.

关键词: power-to-gas     power-to-heat     flexible loads     ancillary services     coherent energy systems    

复合柔性结构航天器动力学建模研究

曲广吉,程道生

《中国工程科学》 1999年 第1卷 第2期   页码 52-56

摘要:

柔性航天器动力学建模的传统方法是采用混合坐标法,针对中心刚体带大型柔性附件类的航天器,这种方法在理论建模和工程应用方面都获得了极大的成功。在中心刚体加柔性附件类航天器柔性动力学研究成果基础上,通过计及柔性体与柔性体连接点间的复合位移变形,利用混合坐标法建立了复合柔性结构航天器动力学模型,其软件系统DASFA 2.0已初步用于工程分析设计。

关键词: 航天器     复合柔性结构     柔性动力学     混合坐标法    

Estimation of flexible pavement structural capacity using machine learning techniques

Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1083-1096 doi: 10.1007/s11709-020-0654-z

摘要: The most common index for representing structural condition of the pavement is the structural number. The current procedure for determining structural numbers involves utilizing falling weight deflectometer and ground-penetrating radar tests, recording pavement surface deflections, and analyzing recorded deflections by back-calculation manners. This procedure has two drawbacks: falling weight deflectometer and ground-penetrating radar are expensive tests; back-calculation ways has some inherent shortcomings compared to exact methods as they adopt a trial and error approach. In this study, three machine learning methods entitled Gaussian process regression, M5P model tree, and random forest used for the prediction of structural numbers in flexible pavements. Dataset of this paper is related to 759 flexible pavement sections at Semnan and Khuzestan provinces in Iran and includes “structural number” as output and “surface deflections and surface temperature” as inputs. The accuracy of results was examined based on three criteria of , , and . Among the methods employed in this paper, random forest is the most accurate as it yields the best values for above criteria ( =0.841, =0.592, and =0.760). The proposed method does not require to use ground penetrating radar test, which in turn reduce costs and work difficulty. Using machine learning methods instead of back-calculation improves the calculation process quality and accuracy.

关键词: transportation infrastructure     flexible pavement     structural number prediction     Gaussian process regression     M5P model tree     random forest    

Design and applications of morphing aircraft and their structures

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0750-6

摘要: Morphing aircraft can adaptively regulate their aerodynamic layout to meet the demands of varying flight conditions, improve their aerodynamic efficiency, and reduce their energy consumption. The design and fabrication of high-performance, lightweight, and intelligent morphing structures have become a hot topic in advanced aircraft design. This paper discusses morphing aircraft development history, structural characteristics, existing applications, and future prospects. First, some conventional mechanical morphing aircraft are examined with focus on their morphing modes, mechanisms, advantages, and disadvantages. Second, the novel applications of several technologies for morphing unmanned aerial vehicles, including additive manufacturing for fabricating complex morphing structures, lattice technology for reducing structural weight, and multi-mode morphing combined with flexible skins and foldable structures, are summarized and categorized. Moreover, in consideration of the further development of active morphing aircraft, the paper reviews morphing structures driven by smart material actuators, such as shape memory alloy and macro-fiber composites, and analyzes their advantages and limitations. Third, the paper discusses multiple challenges, including flexible structures, flexible skins, and control systems, in the design of future morphing aircraft. Lastly, the development and application of morphing structures in the aerospace field are discussed to provide a reference for future research and engineering applications.

关键词: morphing aircraft     additive manufacturing     lattice structure     smart material     flexible structure     flexible skin    

A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1208-1220 doi: 10.1007/s11705-023-2304-1

摘要: The combination of high-voltage windows and bending stability remains a challenge for supercapacitors. Here, we present an “advantage-complementary strategy” using sodium lignosulfonate as a pseudocapacitive molecule to regulate the spatial stacking pattern of graphene oxide and the interfacial architectures of graphene oxide and polyaniline. Flexible and sustainable sodium lignosulfonate-based electrodes are successfully developed, showing perfect bending stability and high electronic conductivity and specific capacitance (521 F·g−1 at 0.5 A·g–1). Due to the resulting rational interfacial structure and stable ion-electron transport, the asymmetric supercapacitors provide a wide voltage window reaching 1.7 V, outstanding bending stability and high energy-power density of 83.87 Wh·kg–1 at 3.4 kW·kg–1. These properties are superior to other reported cases of asymmetric energy enrichment. The synergistic strategy of sodium lignosulfonate on graphene oxide and polyaniline is undoubtedly beneficial to advance the process for the construction of green flexible supercapacitors with remarkably wide voltage windows and excellent bending stability.

关键词: molecular synergy     pseudocapacitive lignosulfonate     flexible electronic devices     asymmetric supercapacitor     wide voltage windows    

Development and testing of a wireless smart toolholder with multi-sensor fusion

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0774-y

摘要: The smart toolholder is the core component in the development of intelligent and precise manufacturing. It enables in situ monitoring of cutting data and machining accuracy evolution and has become a focal point in academic research and industrial applications. However, current table and rotational dynamometers for milling force, vibration, and temperature testing suffer from cumbersome installation and provide only a single acquisition signal, which limits their use in laboratory settings. In this study, we propose a wireless smart toolholder with multi-sensor fusion for simultaneous sensing of milling force, vibration, and temperature signals. We select force, vibration, and temperature sensors suitable for smart toolholder fusion to adapt to the cutting environment. Thereafter, structural design, circular runout, dynamic balancing, static stiffness, and dynamic inherent frequency tests are conducted to assess its dynamic and static performance. Finally, the smart toolholder is tested for accuracy and repeatability in terms of force, vibration, and temperature. Experimental results demonstrate that the smart toolholder accurately captures machining data with a relative deviation of less than 1.5% compared with existing force gauges and provides high repeatability of milling temperature and vibration signals. Therefore, it is a smart solution for machining condition monitoring.

关键词: wireless smart toolholder     multi-sensor fusion     circular runout     dynamic balancing     static stiffness     dynamic inherent frequency    

Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0692-4

摘要: Axial piston pumps have wide applications in hydraulic systems for power transmission. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Vibration and discharge pressure signals are two common signals used for the fault diagnosis of axial piston pumps because of their sensitivity to pump health conditions. However, most of the previous fault diagnosis methods only used vibration or pressure signal, and literatures related to multi-sensor data fusion for the pump fault diagnosis are limited. This paper presents an end-to-end multi-sensor data fusion method for the fault diagnosis of axial piston pumps. The vibration and pressure signals under different pump health conditions are fused into RGB images and then recognized by a convolutional neural network. Experiments were performed on an axial piston pump to confirm the effectiveness of the proposed method. Results show that the proposed multi-sensor data fusion method greatly improves the fault diagnosis of axial piston pumps in terms of accuracy and robustness and has better diagnostic performance than other existing diagnosis methods.

关键词: axial piston pump     fault diagnosis     convolutional neural network     multi-sensor data fusion    

标题 作者 时间 类型 操作

Flexible micro flow sensor for micro aerial vehicles

Rong ZHU, Ruiyi QUE, Peng LIU

期刊论文

A thermally flexible and multi-site tactile sensor for remote 3D dynamic sensing imaging

Guoting Xia, Yinuo Huang, Fujiang Li, Licheng Wang, Jinbo Pang, Liwei Li, Kai Wang

期刊论文

Piezoelectric pump with flexible venous valves for active cell transmission

期刊论文

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

期刊论文

Review on flexible perovskite photodetector: processing and applications

期刊论文

A review of the scalable nano-manufacturing technology for flexible devices

Wenbin HUANG,Xingtao YU,Yanhua LIU,Wen QIAO,Linsen CHEN

期刊论文

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

期刊论文

Biomedical sensor technologies on the platform of mobile phones

Lin LIU, Jing LIU

期刊论文

Possible role of power-to-heat and power-to-gas as flexible loads in German medium voltage networks

Mark KUPRAT, Martin BENDIG, Klaus PFEIFFER

期刊论文

复合柔性结构航天器动力学建模研究

曲广吉,程道生

期刊论文

Estimation of flexible pavement structural capacity using machine learning techniques

Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND

期刊论文

Design and applications of morphing aircraft and their structures

期刊论文

A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors

期刊论文

Development and testing of a wireless smart toolholder with multi-sensor fusion

期刊论文

Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network

期刊论文